Abstract
Wall-modeled large-eddy simulation (WMLES) is an advanced mathematical model for turbulent flows which solves for the low-pass filtered numerical solution. A subgrid-scale (SGS) model is used to account for the effects of unresolved small-scale turbulent structures on the resolved scales (i.e. for the dissipation of the smaller scales), while the flow behavior near the walls is modeled by wall functions (thus reducing the requirements for mesh fineness/ quality). This paper investigates the possibilities of applying WMLES in the estimation of aerodynamic performance of small-scale propellers, as well as in the analysis of the wake forming downstream. Induced flows around two propellers designed for unmanned air vehicles (approximately 25 cm and 75 cm in diameter) in hover are considered unsteady and turbulent (incompressible or compressible, respectively). Difficulties in computing such flows mainly originate from the relatively low values of Reynolds numbers (several tens to several hundreds of thousands) when transition and other flow phenomena may be present. The choice of the employed numerical model is substantiated by comparisons of resulting numerical with available experimental data. Whereas global quantities, such as thrust and power (coefficients), can be predicted with satisfactory accuracy (up-to several percents), distinguishing the predominant flow features remains challenging (and requires additional computational effort). Here, wakes forming aft of the propeller rotors are visualized and analyzed. These two benchmark examples provide useful guidelines for further numerical and experimental studies of small-scale propellers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.