Abstract

Cloud computing is the internet-based technique where the users utilize the online resources for computing services. The attacks or intrusion into the cloud service is the major issue in the cloud environment since it degrades performance. In this article, we propose an adaptive lion-based neural network (ALNN) to detect the intrusion behaviour. Initially, the cloud network has generated the clusters using a WLI fuzzy clustering mechanism. This mechanism obtains the different numbers of clusters in which the data objects are grouped together. Then, the clustered data is fed into the newly designed adaptive lion-based neural network. The proposed method is developed by the combination of Levenberg-Marquardt algorithm of neural network and adaptive lion algorithm where female lions are used to update the weight adaptively using lion optimization algorithm. Then, the proposed method is used to detect the malicious activity through training process. Thus, the different clustered data is given to the proposed ALNN model. Once the data is trained, then it needs to be aggregated. Subsequently, the aggregated data is fed into the proposed ALNN method where the intrusion behaviour is detected. Finally, the simulation results of the proposed method and performance is analysed through accuracy, false positive rate, and true positive rate. Thus, the proposed ALNN algorithm attains 96.46% accuracy which ensures better detection performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.