Abstract

Weighted k-nearest neighbor (WKNN)-based Wi-Fi fingerprinting is popular in indoor location-based services due to its ease of implementation and low computational cost. KNN-based methods rely on distance metrics to select the nearest neighbors. However, traditional metrics often fail to capture the complexity of indoor environments and have limitations in identifying non-linear relationships. To address these issues, we propose a novel WKNN-based Wi-Fi fingerprinting method that incorporates distance metric learning. In the offline phase, our method utilizes a Siamese network with a triplet loss function to learn a meaningful distance metric from training fingerprints (FPs). This process employs a unique triplet mining strategy to handle the inherent noise in FPs. Subsequently, in the online phase, the learned metric is used to calculate the embedding distance, followed by a signal-space distance filtering step to optimally select neighbors and estimate the user’s location. The filtering step mitigates issues from an overfitted distance metric influenced by hard triplets, which could lead to incorrect neighbor selection. We evaluate the proposed method on three benchmark datasets, UJIIndoorLoc, Tampere, and UTSIndoorLoc, and compare it with four WKNN models. The results show a mean positioning error reduction of 3.55% on UJIIndoorLoc, 16.21% on Tampere, and 16.49% on UTSIndoorLoc, demonstrating enhanced positioning accuracy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.