Abstract

A general scheme of the self-consistent construction of a semiclassical approximation for the Dirac equation in an external gauge field in which the standard Dirac operator is replaced by the Dirac operator with a supersymmetric extension is presented. It is shown that in contrast to the usual WKB method, here the expansion must be carried out over half-integer powers of the Planck constant ħ. The first four terms of the semiclassical expansion of the wave function are obtained in explicit form. It is shown that generalization of the initial Dirac operator leads to the appearance of new additional terms in the semiclassical equation of motion for the spin of a particle in an external field, which thus requires a modification of the Lagrangian of the spinning particle. The result so obtained is used to construct mappings between two Lagrangian descriptions of a classical color-charged spinning particle, one of which possesses local supersymmetry, and the other not. It is shown that in order for the mappings to be one-to-one it is necessary to add new additional terms to the Lagrangian without supersymmetry, obtained within the framework of the semiclassical approximation of the Dirac operator with supersymmetry.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.