Abstract
We consider the behavior of solutions to the water wave interaction equations in the limit ε→0+. To justify the semiclassical approximation, we reduce the water wave interaction equation into some hyperbolic-dispersive system by using a modified Madelung transform. The reduced system causes loss of derivatives which prevents us to apply the classical energy method to prove the existence of solution. To overcome this difficulty we introduce a modified energy method and construct the solution to the reduced system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.