Abstract

A first example of spirochlorin-chlorin dimer with fixed distances and orientations as potential model for the "special pair" of the photosynthetic reaction center is discussed. For the preparation of such a novel structure, the Wittig reagent of the desired "spacer" 5 was reacted with photoprotoporphyrin IX dimethyl ester 3 to produce the intermediate dimer 6, which on intramolecular [4 + 2] Diels-Alder cycloaddition gave an unexpected spirochlorin-chlorin dimer 9. Dehydration of dimer 6 under acid-catalyzed conditions generated the corresponding spirochlorin-porphyrin dimer 16 in quantitative yield. The asymmetry in dimer 6 caused by the biphenyl-type anisotropic effect was confirmed by NMR and model studies. The formation of dihydrobenzoporphyrin 14 by reacting chlorin 3 with the phosphonium salt of p-methylbenzylbromide 10 and isolation of 8-phenanthrenevinylporphyrin 19 from chlorin 7 further confirmed our proposed mechanism for the formation of a spirochlorin-chlorin dimer 9. Following a similar approach, chlorin 3 on reacting with bis-phosphonium salt of 4, 4'-bischloromethylbiphenyl produced conjugated chlorin dimer 25. The spectroscopic data obtained from these dimers suggest that, in these compounds, the individual chromophores are not behaving as an individual molecule, but as a single macrocycle. To examine whether the pi-pi interaction exhibited by dimer 9 resembles the structural arrangement of bacteriochlorophylls in reaction center (RC), we investigated the geometrical parameters used to characterize the pi-pi interactions in tetrapyrrolic macrocycles. Starting from the crystallographic coordinates of 9, the molecular mechanics energy minimization was performed to obtain the model dimer structure. The geometrical parameters that measure the single pyrrole ring overlap were used to compare the model structure with the crystallographic coordinates of the special pair in photosynthetic reaction center. The results indicated that the ring A of spirochlorin and the ring C of chlorin in our model dimer 9 mimic the ring A-ring A interaction found in the crystallographic special pairs, which are strategically placed by the surrounding photosynthetic reaction center protein matrix.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call