Abstract
For a finite-dimensional (but possibly noncompact) symplectic manifold with a compact group acting with a proper moment map, we show that the square of the moment map is an equivariantly perfect Morse function in the sense of Kirwan, show that certain integrals of equivariant cohomology classes localize as a sum of contributions from these compact critical sets, and bound the contribution from each critical set. In the case (1) that the contribution from higher critical sets grows slowly enough that the overall integral converges rapidly and (2) that 0 is a regular value of the moment map, we recover Witten's result [E. Witten, Two dimensional gauge theories revisited, J. Geom. Phys. 9 (1992) 303–368; http://xxx.lanl.gov/abs/hep-th/9204083] identifying the polynomial part of these integrals as the ordinary integral of the image of the class under the Kirwan map to the symplectic quotient.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.