Abstract

We prove Witt’s cancelation and extension theorems for Galois Ring valued quadratic forms. The proof is based on the properties of the invariant I , previously defined by the authors, that classifies, together with the type of the corresponding bilinear form (alternating or not), nonsingular Galois Ring valued quadratic forms. Our results extend the Witt’s theorem for mod four valued quadratic forms. On the other hand, the known relation between the invariant I and the Arf invariant of an ordinary quadratic form (if the associated nonsingular bilinear form is alternating) is extended to the nonalternating case by explaining the invariant I in terms of Clifford algebras.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.