Abstract

In this paper we study the Witt groups of symmetric and anti-symmetric forms on perverse sheaves on a finite-dimensional topologically stratified space with even dimensional strata. We show that the Witt group has a canonical decomposition as a direct sum of the Witt groups of shifted local systems on strata. We compare this with another `splitting decomposition' for Witt classes of perverse sheaves obtained inductively from our main new tool, a `splitting relation' which is a generalisation of isotropic reduction. The Witt groups we study are identified with the (non-trivial) Balmer-Witt groups of the constructible derived category of sheaves on the stratified space, and also with the corresponding cobordism groups defined by Youssin. Our methods are primarily algebraic and apply more widely. The general context in which we work is that of a triangulated category with duality, equipped with a self-dual t-structure with noetherian heart, glued from self-dual t-structures on a thick subcategory and its quotient.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.