Abstract

AbstractDeveloping novel anodes with outstanding fast‐charging properties is crucial for next‐generation energy storage research. Sb2S3 materials are deemed promising electrodes due to their high theoretical specific capacity. However, they are restricted by sluggish bulk‐phase kinetics, bringing about inferior electronic conductivity at high current density. In this work, the cable‐like SS@C‐x anodes are successfully prepared via the thermal‐chemical treatment method. Through the tailoring of habit modifiers, their unique core–shell architectures are induced with (hk1) preferential planes and the construction of S‐defects, accompanied by lowered energy barriers. Meanwhile, assisted by C─S and C─O─Sb bonds, the charge accumulation on the surface can be rapidly released toward the bulk phase. As expected, for the as‐optimized samples, the capacity of 603.7 mAh g−1 can remain after 100 cycles at 1.0 A g−1. Even at 10.0 A g−1, their superior capacity of 436.1 mAh g−1 can be noted, and it still displayed the reversible capacity of 479 mAh g−1 at −5 °C. Assisted by kinetic analysis, the great electrochemical properties mainly come from the reduced migration energy barriers and accelerated Li+ diffusion rates. Given this, the work is expected to shed light on crystal orientation tuning and defect engineering for advanced metal‐based energy storage materials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.