Abstract

In a group of healthy adults (N = 48), this study evaluated how fMRI Blood Oxygen Level-Dependent (BOLD) signal variability differed across letter n-back task load and quantified the extent to which BOLD signal variability was associated with in-scanner accuracy and reaction time as well as out-of-scanner measures of vigilance and working memory (WM). Within-individual BOLD signal variability in regions of interest (ROIs, identified as peak coordinates in an attention/vigilance and WM network using Neurosynth) was differentially modulated across vigilance and WM trials. Within-individual BOLD signal variability was significantly greater across the majority of the ROIs in the working memory trials (2- and 3-back trials) compared to 0-back trials. Notably, this increased variability across the network was accompanied by significantly less variability in the left cingulate gyrus and left inferior temporal lobe during the working memory trials. Significantly fewer differences in within-individual BOLD signal variability were identified for vigilance trials (0- and 1-back trials) compared to crosshair. We hypothesized that increased BOLD signal variability would be associated with n-back task performance and with out-of-scanner measures of vigilance (Digit Span Forward) and WM (Auditory Consonant Trigrams and Digit Span Backward). These results were non-significant after correcting for multiple comparisons. Furthermore, using multivariate analyses (partial least squares regression; PLS-R), within-individual BOLD signal variability in regions associated with a WM-vigilance network did not significantly predict out-of-scanner test performance after appropriate cross validation, yet provided a promising trend for WM trials; greater within-individual BOLD signal variability during WM n-back trials was associated with decreased performance on all included neuropsychological measures, which provides partial support for previous findings. This study demonstrates that patterns of variability differ based on task load in the scanner and illustrates an intriguing association between within-individual BOLD signal variability and out-of-scanner behavioral performance that may be better explored in future studies with a larger sample size.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call