Abstract

BackgroundAmong the challenges of living with lower limb loss is the increased risk of long-term health problems that can be either attributed directly to the amputation surgery and/or prosthetic rehabilitation or indirectly to a disability-induced sedentary lifestyle. These problems are exacerbated by poorly fit prosthetic sockets. There is a knowledge gap regarding how the socket design affects in-socket mechanics and how in-socket mechanics affect patient-reported comfort and function. The objectives of this study are (1) to gain a better understanding of how in-socket mechanics of the residual limb in transfemoral amputees are related to patient-reported comfort and function, (2) to identify clinical tests that can streamline the socket design process, and (3) to evaluate the efficacy and cost of a novel, quantitatively informed socket optimization process.MethodsUsers of transfemoral prostheses will be asked to walk on a treadmill wearing their current socket plus 8 different check sockets with designed changes in different structural measurements that are likely to induce changes in residual limb motion, skin strain, and pressure distribution within the socket. Dynamic biplane radiography and pressure sensors will be used to measure in-socket residual limb mechanics. Patient-reported outcomes will also be collected after wearing each socket. The effects of in-socket mechanics on both physical function and patient-reported outcomes (aim 1) will be assessed using a generalized linear model. Partial correlation analysis will be used to examine the association between research-grade measurements and readily available clinical measurements (aim 2). In order to compare the new quantitative design method to the standard of care, patient-reported outcomes and cost will be compared between the two methods, utilizing the Wilcoxon-Mann-Whitney non-parametric test (aim 3).DiscussionKnowledge on how prosthetic socket modifications affect residual bone and skin biomechanics itself can be applied to devise future socket designs, and the methodology can be used to investigate and improve such designs, past and present. Apart from saving time and costs, this may result in better prosthetic socket fit for a large patient population, thus increasing their mobility, participation, and overall health-related quality of life.Trial registrationClinicalTrials.gov NCT05041998. Date of registration: Sept 13, 2021.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call