Abstract

This study investigates the effect of rainfall temporal distribution pattern within a storm event on soil erosion rate and the possibility of using rain power type model for rainfall erosivity. Various rainfall distribution patterns, simulated by rainfall simulator, were used on 1.0 m2 plot of silica sand and loam soil with a minimum of three replications. The results show that the soil erosion rates spiked following every sharp increase in rainfall intensity followed by a gradual decline to a steady erosion rate. Transient effects resulted in the soil erosion rates for an oscillatory rainfall distribution to be more than two fold higher than those obtained for a steady-state rainfall intensity event with same duration and same average rainfall intensity. The 3-parameter and 4-parameter rain power models were developed for a process-based measure of rainfall erosivity. The 4 parameter model yielded better match with the observed data and predicted soil erosion rates more accurately for silica sand under all rainfall distributions, and good results for loam soil under low intensity rainfall. More research is necessary to improve the accuracy of soil erosion prediction models for a wider range of rainfall distributions.

Highlights

  • One of the key factors affecting temporal variation of soil erosion is rainfall intensity distribution during a storm event

  • The average soil erosion rate for the simulated storm that was applied to sand and loam (Figures 2 and 3) shows a distinct dependence on the rainfall intensity and rain power for silica sand

  • It was observed that the soil erosion rates spiked following every sharp increase in rainfall intensity followed by a gradual decline to a steady erosion rate

Read more

Summary

Introduction

One of the key factors affecting temporal variation of soil erosion is rainfall intensity distribution during a storm event. A number of researchers have studied rainfall simulators and demonstrated the significance of various factors, including simulated raindrop size distribution, raindrop impact velocity, raindrop impact angle, and rainfall intensity and duration on rainfall erosivity [1, 3, 4]. Many rainfall simulators apply a temporally varied intensity of simulated rainfall to each small area of soil surface in a sweeping pattern [3, 5]. The power of natural rainfall has been found to be approximately linearly related to rainfall intensity [7, 8]. Meyer [4] has found that interrill detachment rates are related to the second power of intensity or more precisely as shown in

Objectives
Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.