Abstract

An assessment of within field spatial variations in grain yield and methane (CH4) emission was conducted in lowland rice fields of Myanmar. Two successive rice fields (1st field and 2nd field) were divided into fertilized and non-fertilized parts and CH4 measurements were conducted at the inlet, middle and outlet positions of each field. The results showed that CH4 emissions at non-fertilized parts were higher than those at fertilized part in both rice fields. The average CH4 emissions ranged from 8.7 to 26.6 mg m-2 h-1 in all positions in both rice fields. The spatial variation in CH4 emission among the positions was high in both rice fields with the highest emissions in the outlet of the 1st field and the inlet of the 2nd field. The CH4 emissions at these two positions showed 2 - 2.5 times higher than those at other positions in both rice fields. Stepwise regression analysis indicates that soil total carbon content is the primary factor for CH4 emission. The average CH4 emissions during rice growing season were 13.5 mg m-2 h-1 for the 1st field and 15.7 mg m-2 h-1 for the 2nd field. Spearman rank order correlation analysis showed that CH4 emission was significantly and positively correlated with soil temperature, surface water depth and negatively correlated with soil redox potential. The result indicated that high within field spatial variation in CH4 emissions required different site specific management practices to mitigate CH4 emissions in lowland paddy rice soil.

Highlights

  • Rice is the most important crop in Myanmar

  • The results showed that application of ammonium sulfate as N source, triple superphosphate as P source and potassium sulfate as K source inhibited the rate and cumulative CH4 emissions from rice soils by 26.5 and 29.8% in the 1st field and 2nd field respectively when compared with non-fertilized treatment (Figure 5 and Table 2)

  • High spatial variations in grain yield and CH4 emissions among the positions were found in two successive rice fields

Read more

Summary

Introduction

Rice is the most important crop in Myanmar. In terms of rice growing area and production, Myanmar ranks seventh in the world (FAO 2010). The total area of rice cultivation is 8.06 million ha, among which 68% represents lowland rice cultivation areas (FAO 2010). Most of the major lowland rice growing areas such as the Ayeyarwady, Yangon and Bago Divisions are naturally provided with fertile deltaic alluvial soil and abundant monsoon rainfall. Irrigated lowland rice is one of the major rice ecosystems in these regions, especially in semi-rainfed areas. Rice fields in Myanmar are connected as successive fields in lowland areas with a few centimeters of difference in elevation. Even though the importance of paddy rice in Myanmar, basic information of the paddy rice cultivation such as spatial variability of soil properties and yield and its related methane (CH4) emission are still missing

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call