Abstract

Nitrogen (N) and water are key resources for leaf photosynthesis and the growth of whole plants. Within-branch leaves need different amounts of N and water to support their differing photosynthetic capacities according to light exposure. To test this scheme, we measured the within-branch investments of N and water and their effects on photosynthetic traits in two deciduous tree species Paulownia tomentosa and Broussonetia papyrifera. We found that leaf photosynthetic capacity gradually increased from branch bottom to top (i.e. from shade to sun leaves). Concomitantly, stomatal conductance (gs) and leaf N content gradually increased, owing to the symport of water and inorganic mineral from root to leaf. Variation of leaf N content led to large gradients of mesophyll conductance, maximum velocity of Rubisco for carboxylation, maximum electron transport rate and leaf mass per area (LMA). Correlation analysis indicated that the within-branch difference in photosynthetic capacity was mainly related to gs and leaf N content, with a relatively minor contribution of LMA. Furthermore, the simultaneous increases of gs and leaf N content enhanced photosynthetic N use efficiency (PNUE) but hardly affected water use efficiency. Therefore, within-branch adjustment of N and water investments is an important strategy used by plants to optimize the overall photosynthetic carbon gain and PNUE.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.