Abstract

Abstract Exascale computing could soon enable a predictive theory of nuclear structure and reactions rooted in the Standard Model, with quantifiable and systematically improvable uncertainties. Such a predictive theory will help exploit experiments that use nucleons and nuclei as laboratories for testing the Standard Model and its limitations. Examples include direct dark matter detection, neutrinoless double beta decay, and searches for permanent electric dipole moments of the neutron and atoms. It will also help connect QCD to the properties of cold neutron stars and hot supernova cores. We discuss how a quantitative bridge between QCD and the properties of nuclei and nuclear matter will require a synthesis of lattice QCD (especially as applied to two- and three-nucleon interactions), effective field theory, and ab initio methods for solving the nuclear many-body problem. While there are significant challenges that must be addressed in developing this triad of theoretical tools, the rapid advance of computing is accelerating progress. In particular, we focus this review on the anticipated advances from lattice QCD and how these advances will impact few-body effective theories of nuclear physics by providing critical input, such as constraints on unknown low-energy constants of the effective (field) theories. We also review particular challenges that must be overcome for the successful application of lattice QCD for low-energy nuclear physics. We describe progress in developing few-body effective (field) theories of nuclear physics, with an emphasis on HOBET, a non-relativistic effective theory of nuclear physics, which is less common in the literature. We use the examples of neutrinoless double beta decay and the nuclear-matter equation of state to illustrate how the coupling of lattice QCD to effective theory might impact our understanding of symmetries and exotic astrophysical environments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.