Abstract
Insulin mRNA expression in pancreatic islet β-cells is up-regulated by extracellular glucose concentration, but the underlying mechanism remains incompletely understood. MafA is a transcriptional activator specifically enriched in β-cells that binds to the insulin gene promoter. Its expression is transcriptionally and posttranscriptionally regulated by glucose. Moreover, AMP-activated protein kinase (AMPK), a regulator of cellular energy homeostasis, is inhibited by high glucose, and this inhibition is essential for the up-regulation of insulin gene expression and glucose-stimulated insulin secretion (GSIS). Here we mutagenized the insulin promoter and found that the MafA-binding element C1/RIPE3b is required for glucose- or AMPK-induced alterations in insulin gene promoter activity. Under high-glucose conditions, pharmacological activation of AMPK in isolated mouse islets or MIN6 cells by metformin or 5-aminoimidazole-4-carboxamide riboside decreased MafA protein levels and mRNA expression of insulin and GSIS-related genes (i.e. glut2 and sur1). Overexpression of constitutively active AMPK also reduced MafA and insulin expression. Conversely, pharmacological AMPK inhibition by dorsomorphin (compound C) or expression of a dominant-negative form of AMPK increased MafA and insulin expression under low-glucose conditions. However, AMPK activation or inhibition did not change the expression levels of the β-cell-enriched transcription factors Pdx1 and Beta2/NeuroD1. AMPK activation accelerated MafA protein degradation, which is not dependent on the proteasome. We also noted that MafA overexpression prevents metformin-induced decreases in insulin and GSIS-related gene expression. These findings indicate that high glucose concentrations inhibit AMPK, thereby increasing MafA protein levels and activating the insulin promoter.
Highlights
This article has been withdrawn by the authors
Summary
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.