Abstract

In vitro generation of HSCs from pluripotent stem cells (PSCs) can be regarded as novel therapeutic approaches for replacing bone marrow (BM) transplantation without immune rejection or graft versus host disease(GVHD). To date, many differentiation approaches have been evaluated in terms of directing PSCs toward different hematopoietic cell types, yet, low efficiency and no function restrict the further hematopoietic differentiation study, our research aim to develop a three dimention (3D) hematopoietic differentiation approach that serve as recapitulation of embryonic development in vitro to a degree of complexity not achievable in a two dimention (2D) culture system. We first found that mouse PSCs could be efficiently induced to hematopoietic differentiation with expression of hematopoietic makers such as c-kit, CD41 and CD45 within self-assembling peptide hydrogel. Colony-forming cells assay results suggested mPSCs could differentiated into multipotential progenitor cells and 3D induction system derived hematopoietic colonies owned potential of differentiating into lymphocyte cells. In addition, in vivo animal transplantation experiment showed that mPSCs(CD45.2) could embedded into NOD/SCID mice(CD45.1) with about 3% engraftment efficiency after 3 weeks transplantation. This study demonstrated that we developed the 3D induction approach that could efficiently promoted the hematopoietic differentiation of mPSCs in vitro and obtained the multipotential progenitors that possessed the short-term engraftment potential. This article is protected by copyright. All rights reserved.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call