Abstract

Nicotine vapor consumption via electronic nicotine delivery systems has increased over the last decade. While prior work has shed light on the health effects of nicotine vapor inhalation, its unique effects on the brain and behavior have not been thoroughly explored. In this study we assessed markers of withdrawal following 14 days of nicotine vapor exposure. For Experiment 1, 21 adult male rats were exposed to ambient air or 6, 12, or 24 mg/mL nicotine vapor for 14 consecutive days. Following exposure on day 14, rats were injected with the nicotinic receptor antagonist mecamylamine (3.0 mg/mL) and assessed for somatic withdrawal signs and anxiety-like behavior in the elevated plus maze. For Experiment 2, 12 adult male rats were tested for intracranial self-stimulation (ICSS) immediately following exposure to vehicle vapor (50%/50%, vegetable glycerin/propylene glycol) or 24 mg/mL nicotine vapor, for 14 consecutive days. ICSS behavior was assessed for an additional 14 days, following cessation of repeated vapor exposure. Results reveal that rats with repeated nicotine vapor exposure display an increase in behavioral indicators of withdrawal following injection of mecamylamine (precipitated withdrawal). Additionally, increases in ICSS stimulation thresholds, indicative of reduced brain reward sensitivity, persist following cessation of repeated nicotine vapor exposure (spontaneous withdrawal). These data suggest that repeated e-cigarette use leads to nicotine dependence and withdrawal that affects behavior and brain reward function. Further characterization of the health effects of nicotine vapor is necessary to improve treatment strategies for nicotine use disorder and public health policies related to novel nicotine delivery systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call