Abstract
To understand the mechanisms of 15(S)-HETE-induced endothelial cell (EC) barrier dysfunction, we examined the role of xanthine oxidase (XO). 15(S)-HETE induced junction adhesion molecule A (JamA) phosphorylation on Y164, Y218, and Y280 involving XO-mediated reactive oxygen species production and Src and Pyk2 activation, resulting in its dissociation from occludin, thereby causing tight junction (TJ) disruption, increased vascular permeability, and enhanced leukocyte and monocyte transmigration in vitro using EC monolayer and ex vivo using arteries as models. The phosphorylation of JamA on Y164, Y218, and Y280 appears to be critical for its role in 15(S)-HETE-induced EC barrier dysfunction, as mutation of any one of these amino acid residues prevented its dissociation from occludin and restored TJ integrity and barrier function. In response to high-fat diet (HFD) feeding, WT, but not 12/15-lipoxygenase (LO)−/−, mice showed enhanced XO expression and its activity in the artery, which was correlated with increased aortic TJ disruption and barrier permeability with enhanced leukocyte adhesion and these responses were inhibited by allopurinol. These observations provide novel insights on the role of XO in 12/15-LO-induced JamA tyrosine phosphorylation and TJ disruption leading to increased vascular permeability in response to HFD.
Highlights
Withdrawal: 12/15-Lipoxygenase-dependent ROS production is required for diet-induced endothelial barrier dysfunction
This article has been withdrawn by Elena Dyukova, Nikhlesh K
Due to these image duplications, the above-named authors have withdrawn this article
Summary
Withdrawal: 12/15-Lipoxygenase-dependent ROS production is required for diet-induced endothelial barrier dysfunction
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.