Abstract

Measures of human motion provide a rich source of health and physiological status information. This paper provides examples of motion-based biomarkers in the form of patterns of movement, quantified physical activity, and characteristic gaits that can now be assessed with practical measurement technologies and rapidly evolving physiological models and algorithms, with research advances fed by the increasing access to motion data and associated contextual information. Quantification of physical activity has progressed from step counts to good estimates of energy expenditure, useful to weight management and to activity-based health outcomes. Activity types and intensity durations are important to health outcomes and can be accurately classified even from carried smart phone data. Specific gaits may predict injury risk, including some re-trainable injurious running or modifiable load carriage gaits. Mood status is reflected in specific types of human movement, with slumped posture and shuffling gait signaling depression. Increased variability in body sway combined with contextual information may signify heat strain, physical fatigue associated with heavy load carriage, or specific neuropsychological conditions. Movement disorders might be identified earlier and chronic diseases such as Parkinson's can be better medically managed with automatically quantified information from wearable systems. Increased path tortuosity suggests head injury and dementia. Rapidly emerging wear-and-forget systems involving global positioning system and inertial navigation, triaxial accelerometry, smart shoes, and functional fiber-based clothing are making it easier to make important health and performance outcome associations, and further refine predictive models and algorithms that will improve quality of life, protect health, and enhance performance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call