Abstract

The addition of water to spider dragline silk results in fiber contraction to 50% its initial length and significant changes to the mechanical properties of the silk. This event has been termed supercontraction. A decrease in strength and increase in elasticity have been reported when the silk is in contact with water. Two-dimensional wide-line separation (WISE) nuclear magnetic resonance (NMR) is implemented to correlate (13)C chemical shifts with mobility by observing the corresponding (1)H line widths and line shapes in water-saturated spider dragline silk. The WISE NMR spectrum of the native silk exhibits (1)H line widths that are approximately 40 kHz for all carbon environments characteristic of a rigid organic system. In contrast, the water-saturated case displays a component of the (1)H line that is narrowed to approximately 5 kHz for the glycine C(alpha) and a newly resolved alanine helical environment while the alanine C(beta) corresponding to the beta-sheet conformation remains broad. These results indicate that water permeates the amorphous, glycine-rich matrix and not the crystalline, polyalanine beta-sheets. A delay time is added to the WISE NMR pulse sequence to monitor spin diffusion between the amorphous, mobile region and the crystalline domains. The time required for spin diffusion to reach spatial equilibrium is related to the length scale of the polyalanine crystallites. This technique is employed to measure crystalline domain sizes on the nanometer length scale in water-solvated spider dragline silk. These results provide further insight into the structure of spider silk and mechanism of supercontraction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.