Abstract

AbstractPhotosystem I (PSI) is combined with Desulfovibrio gigas hydrogenase for the bioelectrocatalytic photosynthesis of hydrogen at an electrode surface. The activity of these two biocatalysts is linked by two redox polymers; a redox polymer with a relatively positive potential (loaded with an Os complex) is able to reduce PSI and thus facilitates the production of photoexcited electrons, whereas redox polymers of relatively low potential are able to transfer electrons to the hydrogenase. Two negative‐potential redox polymers are tested, with either a viologen pendant (4‐methyl‐4′‐bromopropylviologen functionalized linear polyethylenimine) or a cobaltocene pendant (cobaltocene‐functionalized branched polyethylenimine, Cc‐BPEI). Both are able to protect hydrogenase from O2 inactivation, but only the use of Cc‐BPEI yields significant photocurrents for H+ reduction, likely due to its lower redox potential. The photocurrents obtained are found to be proportional to the quantity of H2 produced, reaching a maximum of −30 μA cm−2 for the system incorporating Cc‐BPEI and showing a relatively positive onset potential at +0.38 V versus SHE.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.