Abstract

Based on the wire-tube DBD reactor, this paper studied the effects of different discharge lengths, discharge air gaps, and electrical parameters on the discharge characteristics of the DBD discharge module. The results show that under the condition of increasing applied voltage, different discharge lengths, discharge air gaps, thicknesses of the insulating medium, and equivalent capacitance of insulating medium all show an increasing trend, while the equivalent capacitance of air-gap medium fluctuated within a certain range. When the discharge length was 30cm, the discharge air gap was 2mm, and the thickness of the insulating medium was 1mm, the discharge effect was the best. In terms of electrical parameters, with the increase of the applied voltage, the "burr" of the current waveform increased, the load voltage and discharge power also increased, the discharge air gap voltage remained almost unchanged, and the equivalent capacitance value of the insulating medium continued to increase while the equivalent capacitance of the air gap medium remained almost unchanged. The optimized DBD discharge module was used for the treatment of exhaust gas containing H2S. The results show that when the gas flow rate was 80L·h-1, the initial concentration was 50mg·m-3, and the applied voltage was 65V, the removal efficiency could reach 100% in 4s. The energy efficiency analysis of the DBD discharge module shows that the energy efficiency of the discharge module varies by changing the different parameters; in the case of H2S degradation, the end products were mainly SO2 and SO3.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.