Abstract
The wire-mesh capacitance tomography (WMCT) has been applied to visualize 2D of the distribution of electric field intensity in the treatment planning system (TPS) of electro-capacitive cancer therapy (ECCT) using human head model. WMCT is proposed in this study to estimate accurately the distribution of electric field intensity which is the main optimum factors of ECCT in order to compensate the inaccuracy of TPS ECCT simulation. The experimental and simulation studies were conducted with wire-mesh sensor consisted of 8×8 wire matrix of copper in human head model using two type of helmet ECCT. The result of electric field value at the intersection wire-mesh have been compared between experimental studies and simulation studies. The electric field average value resulted from ECCT helmet-1 is higher than ECCT helmet-2. The average electric field generated by the ECCT helmet-1 is 1585.72 V/m in an air medium, 97.43 V/m in grey matter and 80.58 V/m in the cancer. While the average electric field generated by the ECCT helmet-2 is 1413.28 V/m in an air medium, 64.20 V/m in grey matter and 52.65 V/m in the cancer. ECCT helmet-1 and helmet-2 result the different of electric field distribution pattern. ECCT helmet-1 is more optimal for used to patient has cancer position in the right and bottom, while ECCT helmet-2 is more optimal for used to patient has cancer position in the top and bottom.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.