Abstract

Motors arise as a heart of the mobility society, and wirelessly operated motors may improve our standard of living. Wireless power transfer in the kilohertz and megahertz range has been extensively explored, finding various potential applications in consumer electronics, electric vehicles, and medical implants. However, stable operation of wirelessly powered motors remains challenging due to voltage fluctuations for motors occurring in dynamic scenarios, e.g., the rotating speed of the motors is varied. Here, we theoretically and experimentally demonstrate the operation of a motor, where the power is wirelessly transferred via coils, is robust against the rotating speed by employing the analogy with non-Hermitian parity-time (PT) symmetry. In addition, our system is robust for misalignment of the coils. Our results open up opportunities for the robust operation of motors via wireless power transfer in dynamic scenarios towards autonomous vehicles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.