Abstract

This paper shows that wirelessly powered backscatter communications is subject to a fundamental tradeoff between the harvested energy at the tag and the reliability of the backscatter communication, measured in terms of SNR at the reader. Assuming the RF transmit signal is a multisine waveform adaptive to the channel state information, we derive a systematic approach to optimize the transmit waveform weights (amplitudes and phases) in order to enlarge as much as possible the SNRenergy region. Performance evaluations confirm the significant benefits of using multiple frequency components in the adaptive transmit multisine waveform to exploit the nonlinearity of the rectifier and a frequency diversity gain.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.