Abstract

Over the last decade, the area of electroencephalography (EEG) witnessed a progressive move from high-end large measurement devices, relying on accurate construction and providing high sensitivity, to miniature hardware, more specifically wireless wearable EEG devices. While accurate, traditional EEG systems need a complex structure and long periods of application time, unwittingly causing discomfort and distress on the users. Given their size and price, aside from their lower sensitivity and narrower spectrum band(s), wearable EEG devices may be used regularly by individuals for continuous collection of user data from non-medical environments. This allows their usage for diverse, nontraditional, non-medical applications, including cognition, BCI, education, and gaming. Given the reduced need for standardization or accuracy, the area remains a rather incipient one, mostly driven by the emergence of new devices that represent the critical link of the innovation chain. In this context, the aim of this study is to provide a holistic assessment of the consumer-grade EEG devices for cognition, BCI, education, and gaming, based on the existing products, the success of their underlying technologies, as benchmarked by the undertaken studies, and their integration with current applications across the four areas. Beyond establishing a reference point, this review also provides the critical and necessary systematic guidance for non-medical EEG research and development efforts at the start of their investigation.

Highlights

  • Recent innovative technology brought in an increasing proportion of hardware to the growing market for buyers of wireless, wearable single-channel, and multichannel electroencephalography (EEG) devices; given their miniature size and reduced price, such devices may be used regularly by individuals [1]

  • A defining criterion of this study is to set aside the traditional research approaches relating to cognitive performance and brain–computer interface (BCI) and focus on the applied research stemming from brain activity, such as education, assisting technologies, or gaming, with further analysis of the various research studies undertaken within each category

  • After the data from the participants was collected, a linear support vector machine (SVM) classification was addressed on the recorded signals and was demonstrated that, on average, the prediction accuracy of behavioral performance was 77%, which seems on par with the previous fMRI study

Read more

Summary

Introduction

Recent innovative technology brought in an increasing proportion of hardware to the growing market for buyers of wireless, wearable single-channel, and multichannel electroencephalography (EEG) devices; given their miniature size and reduced price, such devices may be used regularly by individuals [1]. Given that consumer-grade EEG devices do not require standardization, unlike medical devices, as defined in EU directive 93/42/EEC (https://ec.europa.eu/growth/single-market/european-standards/harmonizedstandards/medical-devices_en), and are not designed or intended to be used for diagnosis or treatment of disease, this area of research remains a rather incipient one, mostly driven by the emergence of new devices which represent the critical link of the innovation chain. In this context, the aim of this study is to provide a holistic assessment of the consumer-grade EEG devices, the success of their underlying technologies, as benchmarked by the undertaken research studies, and their integration with current application domains. Beyond establishing a reference point, this review provides the critical and necessary systematic guidance for non-medical EEG research and development efforts at the start of their investigation

Objectives
Methods
Findings
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call