Abstract

This paper develops a mathematical model to determine the balance of energy input and data sensing and transmission in a wireless sensing node. Since the node acquires energy through harvesting from an intermittent source, and sensing is also carried out intermittently, the node is modelled with random arrivals of both energy and data. A buffer in the node stores data packets while energy is stored in a battery acting as an energy buffer. The approach uses the “Energy Packet Network” paradigm so that both energy and data packets can be modelled as discrete quantities. We assume that for each data packet, the sensor consumes K e energy packets for node electronics including sensing, processing, and storing and K t energy packets for transmission. We model the node's energy and data flow by a two-dimensional random walk which represents the backlog of data and energy packets. We then simplify the model using companion matrices and matrix algebra techniques that allow us to obtain a closed-form solution for the stationary probability distribution for the random walk which allows us to compute important performance measures, including the energy consumed by the node, and its throughput in data packets transmitted as a function of the amount of power that it receives. The model also allows us to evaluate the effect of ambient noise and the needs for data retransmissions, including for the case where M sensors operate in proximity and create interference for each other.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call