Abstract

Wireless sensor networks (WSNs) research has pre-dominantly assumed the use of a portable and limited energy source, viz. batteries, to power sensors. Without energy, a sensor is essentially useless and cannot contribute to the utility of the network as a whole. Consequently, substantial research efforts have been spent on designing energy-efficient networking protocols to maximize the lifetime of WSNs. However, there are emerging WSN applications where sensors are required to operate for much longer durations (like years or even decades) after they are deployed. Examples include in-situ environmental/habitat monitoring and structural health monitoring of critical infrastructures and buildings, where batteries are hard (or impossible) to replace/recharge. Lately, an alternative to powering WSNs is being actively studied, which is to convert the ambient energy from the environment into electricity to power the sensor nodes. While renewable energy technology is not new (e.g., solar and wind) the systems in use are far too large for WSNs. Those small enough for use in wireless sensors are most likely able to provide only enough energy to power sensors sporadically and not continuously. Sensor nodes need to exploit the sporadic availability of energy to quickly sense and transmit the data. This paper surveys related research and discusses the challenges of designing networking protocols for such WSNs powered by ambient energy harvesting.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.