Abstract

Real-time temperature monitoring of individual blood packages capable of wireless data transmission to ensure the safety of blood samples and minimize wastes has become a critical issue in recent years. In this work, we propose flexible temperature sensors using silvernanowires (NWs) and a flexible colorless polyimide (CPI) film integrated with a wireless data transmission circuit. The unique design of the temperature sensors was achieved by patterning Ag NWs using a three-dimensional printed mold and embedding the patterned Ag NWs in the CPI film (p-Ag NWs/CPI), which resulted in a flexible temperature sensor with electrical, mechanical, and temperature stability for applications in blood temperature monitoring. Indeed, a reliable resistance change of the p-Ag NWs/CPIwas observed in the temperature range of -20 to 20 °C with a robust bending stability of up to 5000 cycles at 5 mm bending radius. Real-time and wireless temperature monitoring using the p-Ag NWs/CPIwas demonstrated with the packages of rat blood. The result revealed that the stable and consistent temperature monitoring of individual blood packages could be achieved in a blood box, which was mainly attributed to the conformal attachment of the p-Ag NWs/CPIto different packages in a blood container.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.