Abstract

Resonant wireless power transfer has attracted much attention in recent decades. In some practical applications such as wireless sensor networks, multiple-load transfer over various distances is required. In this letter, the intermediate-coil structure is utilized to transfer the same power to multiple loads over various distances, which indicates that the intermediate coils work both as relay resonators and as power receivers. The mathematical model is built and in-depth analysis is conducted. Four important factors, namely the source matching factor, the load matching factor, the transfer quality factor, and the reflected impedance factor, are employed to build the mathematical model of n-load transfer. The conditions to transmit the same power to all the loads attached in each relay resonator are investigated. The optimal load resistance and the highest efficiency with the same load resistance are derived. The theoretical calculations and the experimental results of double-load and three-load transfer confirm the analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.