Abstract
Abstract: As an alternate form in the road transportation system, electric vehicle (EV) can help reduce the fossil-fuel consumption. However, the usage of EVs is constrained by the limited capacity of battery. Wireless Power Transfer (WPT) can increase the driving range of EVs by charging EVs in motion when they drive through a wireless charging lane embedded in a road. The amount of power that can be supplied by a charging lane at a time is limited. A problem here is when a large number of EVs pass a charging lane, how to efficiently distribute the power among different penetrations levels of EVs? However, there has been no previous research devoted to tackling this challenge. To handle this challenge, we propose a system to balance the State of Charge (called BSoC) among the EVs. It consists of three components: i) fog-based power distribution architecture, ii) power scheduling model, and iii) efficient vehicle-to-fog communication protocol. The fog computing center collects information from EVs and schedules the power distribution. We use fog closer to vehicles rather than cloud in order to reduce the communication latency. The power scheduling model schedules the power allocated to each EV. In order to avoid network congestion between EVs and the fog, we let vehicles choose their own communication channel to communicate with local controllers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal for Research in Applied Science and Engineering Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.