Abstract

Large and complex deep space platforms such as the Deep Space Habitat (DSH) being developed by NASA will require a robust, on-platform, Integrated System Health Management (ISHM) function. Currently the DSH is contemplated to be stationed at the L2 Lagrangian point outbound from the lunar orbit. This will provide a vantage point of the back side of the moon as well as to serve as a jumping off platform for manned trips to Mars, the Moon, or near Earth asteroids. The ISHM function includes the monitoring, diagnostics, prognostics, and failure mitigation strategies and capabilities for any viable failure modes of the DSH. To evaluate a prototype of this approach, NASA has assembled a full scale, ISS derived, DSH prototype at the Marshall Space Flight Center (MSFC), involving a wired ISHM sensor network of over 80 sensors located at various points where early system failure mechanisms may be detected and analyzed. However, it is anticipated that a wired, distributed architecture could involve many pounds of complex cable harnesses and connectors, along with the commonly encountered problems of accessibility, flexibility and maintainability. In the high likelihood that modifications or upgrades are needed, these complexities result in higher design and build cost along with increased operational costs as in-flight anomalies occur that could require the addition of different sensors or different sensor locations. To address these issues, the ISHM team at MSFC is studying a wireless, distributed architecture with on- platform, advanced prognostic and diagnostic capabilities. The approach being considered is based on the X-33 ISHM system which consisted of hardware identical remote health nodes (RHN) and a central vehicle health management computer. Each RHN was very flexible and reprogrammable to enable it to interface directly with all the health monitoring sensors. For application on the DSH, modifications to the RHN are being considered. These changes and resulting upgraded capabilities are described in this paper. As ISHM sensor technology gets smaller, more robust, and includes wireless interfaces for communication and power, the approach will be to connect these wireless sensors by adding state-of-the-art wireless technology to the X-33 developed RHN. This wireless approach eliminates connectors and cables, thus reducing development, installation and life cycle costs while improving reliability and flexibility of the ISHM systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call