Abstract

The existing greenhouse monitoring algorithm has a long delay time, so it is unable to carry out effective remote greenhouse monitoring, therefore, a new wireless monitoring algorithm based on the fuzzy control technolog was put forward, which was able to remotely monitor the greenhouse temperature, humidity and illumination data in real time. Firstly, the overall framework of greenhouse monitoring algorithm was built, including fuzzy clustering algorithm and sensing layer devices. Secondly, the temperature-humidity sensors and light sensitivity sensors in the sensing layer devices were used to deeply mine and optimize the parameters of temperature, humidity and light intensity in current greenhouse, so as to ensure the stability of subsequent transmission. Meanwhile, the corresponding perceptual recognition layer and broadband access method were designed, and GPRS technology was used to feed back the data information to the monitoring data layer through temperature-humidity sensors and light sensitivity sensors. Moreover, UDP protocol was taken as the data core transmission protocol, and the adaptive protection design algorithm was proposed to ensure the most reasonable transmission of monitoring data, get the current monitoring data of temperature, humidity and illuminance. The experimental results show that the maximum delay time of the algorithm is 46 s, which is far lower than the traditional algorithm, and the delay time of temperature monitoring is also lower than the traditional algorithm. It is results show that the response delay of remote intelligent greenhouse monitoring algorithm is low and the overall monitoring effect is ideal. The purpose of monitoring temperature, humidity and illumination can be achieved.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.