Abstract

AbstractPrecise neural electrical stimulation, which is a means of promoting neuronal regeneration, is a promising solution for patients with neurotrauma and neurodegenerative diseases. In this study, wirelessly controllable targeted motion and precise stimulation at the single‐cell level using S.platensis@Fe3O4@tBaTiO3 micromotors are successfully demonstrated for the first time. A highly versatile and multifunctional biohybrid soft micromotor is fabricated via the integration of S.platensis with magnetic Fe3O4 nanoparticles and piezoelectric BaTiO3 nanoparticles. The results show that this micromotor system can achieve navigation in a highly controllable manner under a low‐strength rotating magnetic field. The as‐developed system can achieve single‐cell targeted motion and then precisely induce the differentiation of the targeted neural stem‐like cell by converting ultrasonic energy to an electrical signal in situ owing to the piezoelectric effect. This new approach toward the high‐precision stimulation of neural stem‐like cells opens up new applications for micromotors and has excellent potential for precise neuronal regenerative therapies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.