Abstract
This paper reports the first in vivo testing of a resonant-heating stent toward wireless hyperthermia treatment of in-stent restenosis. The stent, made of gold-coated medical-grade stainless steel, is designed to function as an electrical inductor and forms a radiofrequency (RF) resonant circuit with an integrated capacitor microchip. Upon implantation and deployment with the balloon catheter, the stent device serves as a wireless heater as part of the resonant wireless power transfer system, which allows for the device to produce mild heat only when the stent is resonated with a tuned RF electromagnetic field supplied from the external antenna. The wireless power transmitter includes an independent omnidirectional booster antenna that enhances the power delivery to the implanted stent device. The entire stent device is packaged with 40-μm-thick ParyleneC film that is shown to be essential for minimizing electrothermal damping in a conductive liquid like blood. The in vitro tests of the prototype system show a temperature increase of 3.3°C in the stent device couple in a flow loop of saline pumped at a flow rate relevant to the condition of coronary stenosis. In swine models, the system demonstrates RF heating of the stent devices expanded to different diameters, in live blood stream, achieving temperature rises of up to 2.6°C in a consistent and repeatable manner. These results bring the technology one step closer toward clinical realization of wireless thermal therapy of in-stent restenosis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.