Abstract

Heart monitoring kits are only available for bedridden patients and the traditional heart monitoring kits have many wires that are obstacle patients’ mobility. Most of the existing heart monitoring kits can not detect heart diseases. Thus, the current study proposed a wireless heart monitoring kit to monitor patients with a heart abnormality. The proposed kit can detect and classify four arrhythmia types as well as normal ECG with high accuracy. The design and development of the wireless heart abnormality monitoring kit (WHAMK) in this research were divided into three stages. These stages are the development of an arrhythmias detection and classification method using artificial intelligence approach, design and implementation of the kit hardware, and design and coding of the kit software. Arrhythmias classification approach is divided into four stages, namely obtaining the electrocardiograph (ECG) signals, preprocessing, features extraction and classification. The features extraction method are based on statistical features. The library support vector machine (LIBSVM) was used to classify the ECG signals. The hardware of the kit is divided into two parts, namely ECG body sensor (EBS), and processing and displaying unit (PDU). EBS working on acquiring the ECG signal from patient's body. PDU working on processing the collected ECG signal, plotting it and detecting the arrhythmias. Arrhythmias classification approach was developed by using statistical features and LIBSVM. They were implemented in the software of the kit to enable it to detect the arrhythmias in the real-time and fully automatically. The kit can detect and classify four arrhythmia types as well as normal sinus rhythm (NSR). These types of arrhythmia are premature atrial contraction (PAC), premature ventricles contraction (PVC), Bradycardia and Tachycardia. The proposed kit gave a good accuracy for detecting and classifying Arrhythmia with the overall accuracy of 96.2%.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.