Abstract

Experimental measurements of the strain and pressure of rotor blades are important for understanding the aerodynamics and dynamics of a rotorcraft. This understanding can help in solving on-blade problems as well as in designing and optimizing the blade profiles for improved aerodynamics and noise attenuation in the next generation rotorcraft. The overall goal of our research is to develop a miniature wireless optical sensor system for helicopter on-blade pressure and strain measurements. In this paper, leveraging past and current experiences with fiber optic sensor development, a proof-of- concept of fiber optic pressure/strain sensor system with wireless data acquisition and transfer capability is demonstrated. The recently developed high-speed, real-time fiber optic sensor demodulation techniques based on low coherence interferometry and phase-shifting interferometry is used. This scheme enables a Spatial Division Multiplexing configuration that consists of multiple Fabry-Perot strain and pressure sensors. Calibration of the strain and pressure sensors is carried out by using commercially available sensors as references. Spin chamber testing of the sensor system for simultaneous on-blade pressure and strain field measurements is also performed. It is expected that such a sensor system will result in enhanced robustness and performance for on-blade pressure and strain field measurements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.