Abstract
Integrating a photovoltaic (PV) microgrid system with wireless network control heralds a new era for renewable energy systems. This fusion capitalizes on the strengths of photovoltaic technology, leveraging solar energy for electricity generation while incorporating advanced networked control capabilities. Although employing network communication to facilitate information exchange among system elements offers benefits, it also introduces novel challenges which can hinder fault diagnosis, such as packet loss and communication delay. This paper focuses on a cloud-based fault detection approach for an effective boost converter within a photovoltaic system. Faults are diagnosed using a detection algorithm based on the Lyapunov function, ensuring power optimization. The effectiveness of our approach is demonstrated through simulations of a PV generator model utilizing real-time weather data collected in Brazil, illustrating its robustness through the acquired results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.