Abstract

Recent advances in modern neurocomputing heading toward promising clinical applications of implantable neuronal sensing devices have shown the utmost necessity of wireless communication systems that allow real-time monitoring of neural signals. The design of a wireless transmission system for this particular application shall meet several requirements involving source compression of the high data rate neural recording, communication with a standard device as bridge between body area and remote server, and high fidelity of the received signal to ensure effective brain activity monitoring. A wireless transmission system over Bluetooth and 3G is analyzed for its application to the real-time transmission of neural signals captured by implanted micro-electrode array sensors. Average compression rate of 75% of the neural signal is achieved through detection using nonlinear energy operator preprocessing and automatic threshold adaptation. The wireless transmission of these signals integrates a Bluetooth transmission from the information source to a conventional mobile device and then over 3G to a remote server, without intermediate storage on the mobile phone. Reconstruction of the coded neural signal provides the input to high-performance spike classification algorithm allowing the tracking of individual neuron spiking patterns.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.