Abstract
Split inference facilitates deep neural network (DNN) inference tasks at resource-constrained edge devices. However, a pre-determined split configuration of a DNN limits the inference performance in time-varying wireless channels. To accelerate the inference, we propose a two-stage wireless channel adaptive split inference method by considering memory and energy constraints on the edge device. The proposed scheme is able to offer the privacy of the edge device and improves inference performance in time-varying wireless channels by leveraging a U-shaped DNN splitting framework and adaptively determining the splitting points of a DNN in real-time according to time-varying wireless channel gains.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.