Abstract
The capacity of a wireless network is the maximum possible amount of simultaneous communication, taking interference into account. Formally, we treat the following problem. Given is a set of links, each a sender-receiver pair located in a metric space, and an assignment of power to the senders. We seek a maximum subset of links that are feasible in the SINR model: namely, the signal received on each link should be larger than the sum of the interferences from the other links. We give a constant-factor approximation that holds for any length-monotone, sub-linear power assignment and any distance metric.We use this to give essentially tight characterizations of capacity maximization under power control using oblivious power assignments. Specifically, we show that the mean power assignment is optimal for capacity maximization of bi-directional links, and give a tight θ(log n)-approximation of scheduling bi-directional links with power control using oblivious power. For uni-directional links we give a nearly optimal O(log n + log log Δ)-approximation to the power control problem using mean power, where Δ is the ratio of longest and shortest links. Combined, these results clarify significantly the centralized complexity of wireless communication problems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.