Abstract

In the healthcare sector, the health status and biological, and physical activity of the patient are monitored among different sensors that collect the required information about these activities using Wireless body area network (WBAN) architecture. Sensor-based human activity recognition (HAR), which offers remarkable qualities of ease and privacy, has drawn increasing attention from researchers with the growth of the Internet of Things (IoT) and wearable technology. Deep learning has the ability to extract high-dimensional information automatically, making end-to-end learning. The most significant obstacles to computer vision, particularly convolutional neural networks (CNNs), are the effect of the environment background, camera shielding, and other variables. This paper aims to propose and develop a new HAR system in WBAN dependence on the Gramian angular field (GAF) and DenseNet. Once the necessary signals are obtained, the input signals undergo pre-processing through artifact removal and median filtering. In the initial stage, the time series data captured by the sensors undergoes a conversion process, transforming it into 2-dimensional images by using the GAF algorithm. Then, DenseNet automatically makes the processes and integrates the data collected from diverse sensors. The experiment results show that the proposed method achieves the best outcomes in which it achieves 97.83% accuracy, 97.83% F-measure, and 97.64 Matthews correlation coefficient (MCC).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.