Abstract

We present a novel internet of things (IoT) sensing platform that uses helical propagation paths of ultrasonic guided waves (UGWs) for structural health monitoring. This wireless sensor network comprises multiple identical sensor units that communicate with a host PC. The units have dedicated hardware to both generate and receive ultrasonic signals, as well as RF signals for use in triggering the sensors. The system was developed for monitoring and sensing pipelines and similar structures in real-time to facilitate interactive sensing. For accurate sensing with a limited number of arbitrarily scattered sensors, we obtain information from all sensor pairs and analyze helical propagation paths in addition to the commonly used shortest paths. UGWs can propagate long distances along the walls of pipelines, and their propagation velocity depends directly on the thickness of the waveguide, and is affected by energy leakage and mass loading. In this paper, we evaluated the network by utilizing it to detect fouling. The network could be adapted for further ultrasonic measurement tasks, e.g., measuring wall thicknesses or monitoring defects with pulse-echo methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.