Abstract

Over the past few years, there has been an increasing effort in researching new design of indoor wireless communications systems, due to connectivity that show in a room or in a building. Currently, several companies of telecommunications use purely omnidirectional antennas in their wireless routers to transmit data to laptops in close vicinity [1]. The properties of microstrip patch antennas and arrays with their planar configuration exhibit an attractive option for indoor communications where the gain is considerably enhanced. On the other hand, the generation of microwave and millimetre-wave (mm-wave) signals by using photonic techniques are being used in radio-over-fiber (RoF) systems, distribution antenna systems, broadband wireless access networks, and radar systems etc. In all these applications the microwave signals are generated at a remote central station and distributed transparently to several simplified antenna stations via optical fiber [1]. The main goal of these systems is to reduce infrastructure cost and to overcome the capacity bottleneck in wireless access networks, allowing, at the same time, flexible merging with conventional optical access networks. Thus, in order to design a reliable RoF-based access network infrastructure, RoF techniques must be capable of generating the microwave signals and allow a reliable microwave signals trans‐ mission over the optical link. For broadband wireless systems and distribution antenna systems operating at microwave and millimeter-wave carriers, several photonic techniques for generating microwave signals have been proposed. Among the most common used techniques are: optical heterodyning [2], optical injection locking [3], optical frequency/phase locked loops (OFLL/OPLL) [4], microwave generation using external modulation [5]. Optical injection locking and optical phase-locked loops (OPLL) are expensive in practice. The use of

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call