Abstract

Wire-feed additive manufacturing (AM) is a promising alternative to traditional subtractive manufacturing for fabricating large expensive metal components with complex geometry. The current research focus on wire-feed AM is trying to produce complex-shaped functional metal components with good geometry accuracy, surface finish and material property to meet the demanding requirements from aerospace, automotive and rapid tooling industry. Wire-feed AM processes generally involve high residual stresses and distortions due to the excessive heat input and high deposition rate. The influences of process conditions, such as energy input, wire-feed rate, welding speed, deposition pattern and deposition sequences, etc., on thermal history and resultant residual stresses of AM-processed components needs to be further understood. In addition, poor accuracy and surface finish of the process limit the applications of wire-feed AM technology. In this paper, after an introduction of various wire-feed AM technologies and its characteristics, an in depth review of various process aspects of wire-feed AM, including quality and accuracy of wire-feed AM processed components, will be presented. The overall objective is to identify the current challenges for wire-feed AM as well as point out the future research direction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call