Abstract

A model is presented describing the details of the wire-arc spray process. The model consists of several submodels each treating a different part of the process. A compressible flow model describes the supersonic nozzle flow upstream of the wire tips. The arc is described by a 3-D arc in cross-flow model using different boundary conditions for the cathode and the anode boundary. The resulting temperature and velocity contours serve as upstream boundary for a 2-D turbulent jet model. Particle generation and acceleration is described by treating the initial droplet formation for the anode and the cathode wire separately and then using the resulting particle size and velocity distributions in a secondary break-up model. Comparison with some experimental results show acceptable agreement. This modeling approach may be used for optimization of wire-arc spray equipment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call