Abstract

Out of all the metal additive manufacturing (AM) techniques, the directed energy deposition (DED) technique, and particularly the wire-based one, are of great interest due to their rapid production. In addition, they are recognized as being the fastest technique capable of producing fully functional structural parts, near-net-shape products with complex geometry and almost unlimited size. There are several wire-based systems, such as plasma arc welding and laser melting deposition, depending on the heat source. The main drawback is the lack of commercially available wire; for instance, the absence of high-strength aluminum alloy wires. Therefore, this review covers conventional and innovative processes of wire production and includes a summary of the Al-Cu-Li alloys with the most industrial interest in order to foment and promote the selection of the most suitable wire compositions. The role of each alloying element is key for specific wire design in WAAM; this review describes the role of each element (typically strengthening by age hardening, solid solution and grain size reduction) with special attention to lithium. At the same time, the defects in the WAAM part limit its applicability. For this reason, all the defects related to the WAAM process, together with those related to the chemical composition of the alloy, are mentioned. Finally, future developments are summarized, encompassing the most suitable techniques for Al-Cu-Li alloys, such as PMC (pulse multicontrol) and CMT (cold metal transfer).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.