Abstract

Additive manufacturing (AM) technologies in metallic materials have experienced significant growth over recent decades. Concepts such as design for additive manufacturing have gained great relevance, due to their flexibility and capacity to generate complex geometries with AM technologies. These new design paradigms make it possible to save on material costs oriented toward more sustainable and green manufacturing. On the one hand, the high deposition rates of wire arc additive manufacturing (WAAM) stand out among the AM technologies, but on the other hand, WAAM is not as flexible when it comes to generating complex geometries. A methodology is presented in this study for the topological optimization of an aeronautical part and its adaptation, by means of computer aided manufacturing, for WAAM manufacturing of aeronautical tooling with the objective of producing a lighter part in a more sustainable manner.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.